N,N-Bis(trimethylstannyl)di-t-butylfluorsilylamin; ein sterisch fixiertes Molekül *

Dietmar Stalke, Uwe Klingebiel* und George M. Sheldrick

Institut für Anorganische Chemie der Universität Göttingen, Tammannstr. 4, D-3400 Göttingen (B.R.D.) (Eingegangen 13. Juli 1987)

Abstract

The lithium salt of the aminofluorosilane $(CMe_3)_2SiFNH_2$ reacts with Me₃SnCl to give the mixed silyl- and stannyl-substituted amine $(CMe_3)_2SiFNHSnMe_3$ (I). I dismutates at temperatures above 100 °C in vacuo to $(CMe_3)_2SiFN(SnMe_3)_2$ (II) and $(CMe_3)_2SiFNH_2$. The reaction can be catalysed by bases. II is thermally stable; a determination of the crystal structure shows that the FSiNSn₂ unit is planar, and the NMR spectra indicate that rotation about the N-Si bond is hindered.

Zusammenfassung

Das Lithiumsalz des Aminofluorsilans $(CMe_3)_2SiFNH_2$ reagiert mit Me₃SnCl zum gemischt silyl- and stannylsubstituierten Amin $(CMe_3)_2SiFNHSnMe_3$ (I). I dismutiert bei Temperaturen höher als 100 °C im Vakuum zu $(CMe_3)_2SiFN(SnMe_3)_2$ (II) und $(CMe_3)_2SiFNH_2$. Die Reaktion kann durch Basen katalysiert werden. II ist thermisch stabil; die Kristallstrukturbestimmung zeigt, dass die FSiNSn₂-Einheit in einer Ebene liegt; die Kernresonzspektren deuten auf eine Rotationshinderung der Si-N-Bindung hin.

Ammoniak reagiert mit Chlortrimethylsilan zum Bis(trimethylsilyl)amin und mit Chlortrimethylstannan zum Tris(trimethylstannyl)amin [1-3]. Gemischt silyl- und stannyl-substituierte Amine werden in Umsetzungen der Alkalisalze des Bis(trimethylsilyl)amins mit Halogenstannanen erhalten, z.B. [1-3]:

$$- \frac{|}{- \operatorname{Sin-Hal}} + \operatorname{LiN}(\operatorname{SiMe}_3)_2 \xrightarrow{|}{-\operatorname{LiHal}} - \frac{|}{- \operatorname{SiMe}_3} = \frac{|}{\operatorname{SiMe}_3}$$

0022-328X/88/\$03.50 © 1988 Elsevier Sequoia S.A.

^{*} Prof. C. Eaborn zum 65. Geburtstag gewidmet.

Aufgrund der leichten Kondensation der Zinnverbindungen sind NH- und/oder Si-Hal-funktionelle Silylstannylamine bisher nicht beschrieben. Erst die Synthese stabiler Fluorsilylamine [4] schuf einen Zugang zu dieser Verbindungsklasse, den wir hier vorstellen möchten.

Lithiiertes Di-t-butylfluorsilylamin reagiert in Hexan mit ClSnMe₃ zum Di-tbutylfluorsilyl-trimethylstannylamin I. I ist bei Raumtemperatur eine farblose Flüssigkeit, die im Vakuum unzersetzt destilliert. Wird I bei einer Temperatur $\geq 100^{\circ}$ C getempert, tritt die Dismutation zu Di-t-butylfluorsilyl-bis(trimethylstannyl)amin II und (CMe₃)₂SiFNH₂ ein. Im Gegensatz zu Lithiumsalzen bekannter Fluorsilylamine, die bei Salzeliminierung über intermediäre oder auch isolierbare Iminosilane cyclisieren [5,6], unterliegt das Lithiumsalz von 1 bereits bei Raumtemperatur rasch und quantitativ der Dismutation zu II. Lithiiertes I wurde ¹⁹F-NMR-spektroskopisch (δ (¹⁹F) 12.5 ppm) nachgewiesen. Lithiiertes (CMe₃)₂SiFNH₂ kann in Form seiner cyclischen Folgeprodukte nachgewiesen werden [4]. II ist bei Raumtemperatur farblos und kristallin. II schmilzt ohne Zersetzung.

$$(CMe_{3})_{2}SiFNH_{2} + C_{4}H_{9}Li \xrightarrow{-C_{4}H_{10}} (CMe_{3})_{2}SiFLiNH \xrightarrow{-LiCl} + Me_{3}SnCl \rightarrow (CMe_{3})_{2}SiF-N - SnMe_{3} \xrightarrow{\geq 100 \circ C} (CMe_{3})_{2}SiFNH_{2} + (CMe_{3})_{2}SiF-N \xrightarrow{(1)} + H \xrightarrow{(1)} H$$

Zur Strukturaufklärung von I und II wurden NMR- und Massenspektren herangezogen. Die ¹H-, ¹³C- und ¹¹⁹Sn-NMR-Spektren von II zeigen eine Nichtäquivalenz der Stannylgruppen. Die Koaleszenztemperatur für II ist nach ¹H-N⁻'R-Hochtemperaturaufnahmen bei $+63^{\circ}$ C erreicht. Die Nichtäquivalenz konnte im wesentlichen zwei Ursachen haben:

1. Eine pyramidale Konfiguration des Stickstoffs, wie aus spektroskopischen Daten für $(Me_3Sn)_3N$ abgeleitet [7].

2. Im Molekül existiert eine gehinderte Rotation, wie bereits bei voluminösen Fluorsilylaminen gefunden [8].

Aus diesem Grund wurde von II eine Kristallstrukturanalyse erstellt. Die Ergebnisse zeigen ein monomeres, planares Molekül (Fig. 1a. b), wie es auch für $(Me_3Sn)_3N$ in einem Elektronenbeugungsexperiment gefunden wurde [9]. Die Si. N. F und Sn-Atome liegen in einer Spiegelebene. Die Si-N-Bindung ist relativ kurz (169.8 pm). Die Methylgruppen der t-Bu-Gruppen und der SnMe₃-Gruppen verhindern eine Rotation der SiN-Bindung. Die jeweils um 90° gedrehten Ansichten verdeutlichen diese sterische Hinderung.

Versuche zur Synthese der entsprechenden Bis(trime. .ylsilyl)-verbindung

schlugen auch bei drastischen Reaktionsbedingungen bisher fehl. Der Grund dieses

Fig. 1. (a) Struktur von II im Kristall mit m in der Papierebene; (b) Struktur von II im Kristall mit m senkrecht zur Papierebene.

Misserfolgs dürfte sterischer Natur sein, da Si-N-Abstände deutlich kürzer sind als Sn-N-Abstände.

Röntgenstrukturanalyse

Die wichtigsten kristallographischen Daten für II sind in Tab. 1-4 zusammengestellt. Die Datensammlung wurde auf einem Stoe-Siemens-Vierkreisdiffraktome-

Tabelle 1

Wichtige kristallographische Daten von II

Summenformel	$C_{14}H_{24}$ NFSiSn ,	
Μ	502.98	
Datensammlung bei T (\degree C)	- 80	
Raumgruppe	Pnma	
<i>a</i> (pm)	958.6(3)	
<i>b</i> (pm)	1388.5(2)	
c (pm)	1620.2(2)	
α (°)	90	
β(°)	90	
γ(°)	90	
$V(\mathrm{nm}^3)$	2.156	
Ζ	4	
$\rho_{\rm ber.} ({\rm Mg}~{\rm m}^{-3})$	2.012	
$\mu (mm^{-1})$	2.38	
Kristallgrösse (mm)	$0.5 \times 0.6 \times 1.0$	
Anzahl der Reflexe		
gesammelte	5475	
unabhängige	1980	
beobachtete	1788	
$F \ge p\sigma(F)$	4	
$2\theta_{max}$ (°)	50	
R	0.049	
R _w	0.052	
g	0.001	
Anzahl der verfeinerten Parameter	97	
letzte Differenz-Fourier-Synthese		
grösster Peak (e nm ⁻³)	1.2×10^{-3}	
grösstes Tal (e nm ⁻³)	1.2×10^{-3}	

ter bei -80° C durchgeführt. Die Verbindung II lieferte farblose, plastische Kristalle. Eine Absorptionskorrektur wurde nicht durchgeführt, dagegen aber eine Extinktionskorrektur. Die Struktur wurde mit einer automatischen Patterson-Meth-

Tabelle 2

Atomkoordinaten ($\times 10^4$) und äquivalente isotrope Thermalparameter (pm² $\times 10^{-1}$) von H

Atom	x	y	2	$U_{\rm eq}$	
Sn(1)	1849(1)	2500	1116(1)	34(1)	
C(7)	2440(8)	1214(4)	1748(4)	66(2)	
C(8)	-386(10)	2500	1048(6)	72(4)	
Sn(2)	5045(1)	2500	112(1)	53(1)	
C(6)	5901(7)	1246(6)	-442(5)	81(3)	
C(5)	5625(12)	2500	1365(8)	132(8)	
Si	2262(2)	2500	-969(1)	32(1)	
N	2868(6)	2500	16(3)	38(2)	
F	3641(4)	2500	- 1535(3)	44(1)	
C(1)	1377(6)	3660(5)	-1286(3)	49(2)	
C(2)	2186(13)	4494(6)	-1004(6)	129(4)	
C(3)	-31(9)	3814(10)	- 896(9)	176(5)	
C(4)	1270(9)	3752(5)	-2224(4)	81(3)	

"Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ii} Tensors.

122

Tabelle 3 Bindungsabstände (pm) in II

-				
$\overline{\mathrm{Sn}(1)-\mathrm{C}(7)}$	213.6(6)	Sn(1)-C(8)	214.6(9)	
Sn(1)-N	203.3(6)	Sn(2)-C(6)	212.4(8)	
Sn(2) - C(5)	210.5(12)	Sn(2)-N	209.2(6)	
Si-N	169.8(6)	Si-F	160.8(5)	
Si-C(1)	189.2(6)	C(1)-C(2)	146.6(11)	
C(1)-C(3)	150.6(12)	C(1)-C(4)	152.8(9)	

Tabelle 4

Bindungswinkel	(°)	in	Π
----------------	---	----	----	---

C(8) - Sn(1) - C(7)	106.8(3)	N-Sn(1)-C(7)	107.1(2)	
N-Sn(1)-C(8)	115.8(3)	C(5)-Sn(2)-C(6)	107.8(3)	
N-Sn(2)-C(6)	110.7(2)	N-Sn(2)-C(5)	109.6(3)	
F-Si-N	104.7(3)	C(1)-Si-N	114.1(2)	
C(1)-Si-F	102.4(2)	Sn(2)-N-Sn(1)	114.4(3)	
Si-N-Sn(1)	131.3(3)	Si-N-Sn(2)	114.3(3)	
C(2)-C(1)-Si	110.5(5)	C(3)-C(1)-Si	114.2(6)	
C(3)-C(1)-C(2)	103.4(8)	C(4) - C(1) - Si	111.8(4)	
C(4)-C(1)-C(2)	106.2(6)	C(4)-C(1)-C(3)	110.2(7)	
C(7)-Sn(1)-C(7a)	113.7(3)	C(6) - Sn(2) - C(6a)	110.4(3)	
C(1)-Si-C(1a)	116.6(3)			

ode gelöst (SHELXS) und nach dem Kleinste-Quadrate-Verfahren mit allen Nicht-Wasserstoffatomen anisotrop verfeinert. Die Wasserstoffatome wurden geometrisch ideal positioniert und mit festen Thermalparametern nach einem Reitermodell verfeinert. Das Gewichtsschema betrug: $w^{-1} = \sigma^2(I) + g \cdot F^2$, wobei g der Tabelle 1 zu entnehmen ist.

Weitere Einzelheiten zu der Strukturuntersuchungen können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 52583 und des vollständigen Zeitschriftenzitats angefordert werden.

Experimenteller Teil

Die Versuche wurden in trockenem Inertgas ausgeführt. Massenspektren: CH5-Spektrometer, Varian; NMR-Spektren: Bruker WP80SY und AM250-Kernresonanzgeräte. Die Spektren wurden von 30% igen Lösungen in C_6H_6/C_6D_6 aufgenommen. Interne Standards waren TMS und C_6F_6 ; externer Standard SnMe₄. Zur Molmassenbestimmung wurden Feldionisations-Massenspektren herangezogen.

Darstellung von Di-t-butylfluorsilyl-trimethyl-stannylamin (I)

0.1 mol $(CMe_3)_2SiFNH_2$ wird mit 0.1 mol n-C₄H₉Li (15%ig in Hexan) lithiiert und bei Raumtemperaturen mit 0.1 mol Me₃SnCl versetzt. Die Reaktion wird ¹⁹F-NMR-Spektroskopisch beobachtet und ist nach ca. 2 h beendet. I wird destillativ gereinigt. I. $C_{11}H_{28}FNSiSn$ (340.1). Ausb. 27.5 g (81%); Kp. 80 ° C/0.05 mbar; MS: m/z = 341 (3) M^+ ; ¹H-NMR: δ 0.28 SnCH₃, (⁵J(HF) 0.5 Hz), 1.02 SiCCH₃ (⁴J(HF) 1 Hz); ¹³C-NMR: δ -4.58 SnC (⁴J(CF) 1.2 Hz), 20.5 SiC (²J(CF) 16.0 Hz), 27.63 SiCC₃ (³J_{CF} 0.6 Hz); ¹⁹F-NMR: δ -1.6 (J(FSi*NH*) 13.6 Hz); ²⁹Si-NMR: δ 5.9 (J(SiF) 292.8 Hz); ¹¹⁹Sn-NMR: δ 67.1 (³J(SnF) 19.2 Hz).

Bis(trimethylstannyl)-di-t-butylfluorsilylamin (II)

(A) Wird I \ge 100 ° C getempert, beginnt die Dismutation zu II.

(B) Wird 0.1 mol I bei Raumtemperatur mit $n-C_4H_9Li$ (15% ig in n-Hexan) lithiiert, so kann das Lithiumsalz zwar NMR-spektroskopisch nachgewiesen werden, jedoch nicht zur gezielten Salzeliminierung unter Nachweis eines Iminosilans genutzt werden. Bereits nach wenigen Minuten erfolgt fast quantitativ die Dismutation zu II. II wird durch Kristallisation aus n-Hexan gereinigt.

II. $C_{14}H_{36}FNSiSn_2$ (502.9). Ausb. 23 g (92%); Schmp. 70 ° C: MS (FI-Messung): 503 (100) M^+ ; ¹H-NMR: δ 0.25 SnCH₃, 0.33 SnCH₃ (⁵J(HF) 1.31 Hz), 1.13 SiCCH₃ (⁴J(HF) 1.22 Hz); ¹³C-NMR: δ -1.4 SnCH₃ (⁴J(CF) 4.2 Hz), -0.6 SnCH₃, 21.6 SiC (²J(CF) 15.9 Hz), 29.0 SiCC₃ (³J(CF) 1.4 Hz); ¹⁹F-NMR: δ 21.9; ²⁹Si-NMR: δ 7.7 (J(SiF) 289.3 Hz); ¹¹⁹Sn-NMR: δ 51.7 (³J(SnF) 36.7 Hz), 77.8 (³J(SnF) 100.3 Hz).

Dank

Diese Arbeit wurde von der Stiftung Volkswagenwerk, der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gefördert.

Literatur

- 1 U. Wannagat, Adv. Inorg. Radiochem., 6 (1964) 225.
- 2 O.J. Scherer, Angew. Chem., 81 (1969) 871.
- 3 D.H. Harris, und M.F. Lappert, J. Organomet. Chem. Libr., 2 (1976) 13.
- 4 U. Klingebiel und N. Vater, Angew. Chem., 94 (1982) 870; Angew. Chem. Int. Ed. Engl., 21 (1982) 857; Chem. Ber., 116 (1983) 3277.
- 5 R. Boese und U. Klingebiel, J. Organomet. Chem., 315 (1986) C17.
- 6 M. Hesse und U. Klingebiel, Angew. Chem., 98 (1986). 638; Angew. Chem. Int. Ed. Engl., 25 (1986) 649.
- 7 R.E. Hester und K. Jones, Chem. Commun., 11 (1966) 317.
- 8 U. Klingebiel und J. Neemann, Z. Naturforsch. B, 35 (1980) 1155.
- 9 A.V. Beljakov, L.C. Chaikin, L. Vilkow, H.V. Girbasova, E.T. Bogorabovski und V.S. Savgorobni, Zh. Obshch. Khim., 50 (1980) 695.